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Abstract 

The equation (Schlesinger’s equation) for the isomonodromic deformations of an SL(2, @) con- 
nection with four simple poles on the projective line is shown to describe a holomorphic projective 
structure on a surface. The space of geodesics of this structure is, by a primitive version of twistor 
theory, a two-dimensional complex Poisson manifold containing complete rational curves. The 
Poisson structure degenerates on a divisor and it is shown that the complement of the divisor is a 
symplectic manifold which can be identified with the quotient of the moduli space of representations 
of a free group on three generators in SL(2, c) by the action of a braid group. 
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1. Introduction 

The duality between points and lines in the projective plane is a familiar notion. Perhaps 
less well-known is a nonlinear analogue of this, which forms one of the basic examples 
of twistor theory. From this point of view, the differential geometry of a holomorphic 
projective structure on a two-dimensional manifold CJ is encoded in the complex geometry 
of a surface U* containing rational curves. The surface is the space of geodesics of the 
projective structure, and each rational curve in it consists of the geodesics passing through 
a particular point in U. 

The purpose of this paper is to adopt this approach for a much-studied differential equation 
- the 4-point case of Schlesinger’s equation. This equation appears in a multitude of places 
in mathematics and physics. It is equivalent to Painleve’s sixth equation and can be found 
in many aspects of integrable systems. The equivalence also shows that it is too much to 
ask for explicit solutions in general: these need the Painleve transcendants. 
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What we shall do here is to show that Schlesinger’s equation describes a projective 
structure in two dimensions, and try and identify the complex surface U* to which this 
corresponds in the twistor picture. The key to this identification is the isomonodromic 
interpretation of the equation: solutions are parametrized by representations of a free group 
on three generators, the fundamental group of a four-times punctured sphere. The mapping 
class group (here a braid group) acts on this space of representations by outer automorphisms 
of the free group, and we shall see that a quotient by this action is isomorphic to the 
complement of a divisor in the complex surface U *. 

Turning the question around, we learn that, after dividing by the mapping class group, the 
space of representations admits an extension to a complex manifold which contains compact 
rational curves. This is very close in flavour to the Mumford-Deligne compactification of 
the quotient of Teichmiiller space by the mapping class group. 

It is well-known that spaces of representations of surface groups are symplectic manifolds, 
and the symplectic point of view permeates this discussion. We show in particular that the 
symplectic structure on the space of representations extends to a naturally defined Poisson 
structure on the complex surface II*. 

2. Projective structures 

Given an affine connection on a manifold M, we can define the concept of geodesics. 
These are distinguished curves with the property that through any point and in any direction 
there is a unique geodesic. When we say this, we think of geodesics as unparametrized 
curves, but the equations they satisfy, namely, 

(1) 

provide a parameter t, well defined up to translation, on each curve. Two affine connec- 
tions are projectively equivalent if the geodesics are the same curves, but with different 
parametrizations. This is equivalent to saying that the geodesic flows project to the same 
one-dimensional foliation on the projectivized tangent bundle P(TM). In analytical terms 
it means that 

for some 1 -form C ai dxi. A projective equivalence class of connections is called aprojec- 
tive structure on M. 

When M is two-dimensional with local coordinates (x, y) the parameter t can be elimi- 
nated from (1) to give a nonlinear second-order ordinary differential equation: 
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Conversely, as discussed in [2], any differential equation of the form 

$ =uj (~)3+u*(~)2+U, (2) +ug. 

189 

(2) 

where the coefficients ai are functions of (x. y), defines a projective structure. 
We have implicitly assumed that we were working over the reals with Cm functions here. 

but the differential geometry makes just as good sense on a complex manifold M”. There is. 
however, in this case an alternative treatment based on the study of complex submanifolds 
of complex manifolds - an elementary version of twistor theory - as described in [4,6]. In 
this version P (TM) is a complex manifold with a foliation by the orbits of the geodesic flow 
of any representative affine connection. For a geodesically convex neighbourhood U E M. 
the quotient space U* of the foliation is a well-defined complex manifold of dimension 
212 - 2 with projection map 

j-r: P(TlJ) + U* 

Each projectivized tangent space P(T, U) maps to a projective space IFD”-’ in U*. 
In dimension 2, U* is a complex surface, and each projective space is a projective line 

with self-intersection number 1. The remarkable fact is that this information - a complex 
surface with a family of projective lines of self-intersection 1 - is sufficient to recover the 
projective structure on U. The normal bundle of each line is O( 1), and it is a consequence 
of a theorem of Kodaira that the lines are parametrized by a two-dimensional complex 
manifold. Given such a surface U*, we simply define U to be this manifold - the locally 
complete family of lines in U*. For each < E U*, the lines passing through < define a 
distinguished curve in U which is a geodesic of the projective structure. 

This construction generalizes the duality between lines in a projective plane and points 
in the dual plane, but there is an essential difference. The space U has a local differential- 
geometric structure - a projective structure. The dual space U*, the space of geodesics in 
U. is locally trivial -just a complex surface - but has globally defined projective lines lying 
in it. 

Nevertheless, the basic features of duality remain. A point x E U defines a curve C., 
in CT* - the projective line consisting of all the geodesics passing through x. A geodesic 
CcUdefinesapoint{,~U*.Ifx~C,then&.~C,. 

From the point of view of the differential equation (2), the graph of a solution of the 
equation is a geodesic in U. Graphs have the property that dyldx is finite, and so during 
the elimination process of replacing t by x we have omitted geodesics for which dx/dt = 0 
at some point. The space of geodesics U” is thus covered by two open sets: one the solutions 
to (2), and the other solutions to the equation of the same form obtained by taking v as the 
independent and x the dependent variable. 

We shall analyse this correspondence in the case of a particularly important nonlinear 
equation: Schlesinger’s equation. 
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3. Schlesinger’s equation 

Consider the meromorphic connection defined on a rank m trivial vector bundle over 
C x V (where V c @” is an open subset) by the connection form 

A=kAk 
dz - dxk 

k=l 
Z--k ’ 

(3) 

where Ak : V + @(m, C) is holomorphic. The flatness of the connection can be expressed 
as 

dAi + C[Ai* Ajl 
dxi - dxj = o 

iii 

x, _ x’ 
I J 

(4) 

and this Schlesinger’s equationm: 

We shall only consider the special case where n = 3 and m = 2: we take the Ak to be 2 x 2 
matrices of trace zero, elements of the Lie algebra 51(2, C). By a projective transformation 
we can assume that (xl, x2, x3) = (0, 1, t) and then the equation can be written as 

dA1 [A37 A11 dA2 [A3> A21 -=- -=_ 
dt dt 

dA3 -= 
dt 

b&31 I [Az,A31 
t-l ’ 

t t-l ’ 
(5) 

where the last equation is equivalent to 

AI + A2 + A3 = -A4 = const. 

Clearly the equation is unchanged by an overall conjugation of the matrices Ak by a constant 
matrix P. Notice also that for 1 5 k 5 4 

dAk 
- = [Ak, Ck(A, t)l 

dt 

for some matrix Ck so that as t evolves, each Ak lies on the same orbit c?k C 51(2, C). The 
integral curves of Schlesinger’s equation thus lie on the subspace 

{(AI, A23.43, A4) E 01 x 02 x 03 x 04: Al + A2 + A3 + A4 = 0), 

a five-dimensional space (if none of the Ak is zero). By invariance under overall conjugation 
we get an equation on the two-dimensional quotient M by the group SL(2, C). (We assume 
here that we are dealing with an open set of stable points on which the action has a good 
quotient.) 

To find local coordinates on this quotient consider the functions x = tr(AtA3) and 
y = tr(AzAa), which are well defined on M. 

Lemma 1. The functions x, y, are local coordinates in a neighbourhood of a point such 
that tr (A1 [AZ, A3]) # 0. 
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PKJOJ A tangent vector to the product of orbits is of the form 

(A,. AZ. A3, A4 = ([AI, BII, iA27 B21, [Aj. &I. [A4. B41) 

and so dx and dy annihilate such a vector if and only if 

tr(]A 1, BI lA3) + tr(A1 [A3, B31) = 0. 

tr(IA2. B21A3) + tr(A2IA3. 831) = 0 

or equivalently 

tr((Bt - B3)[A3, AIN = 0. tr((B2 - B3)[A3, A21) = 0. 

If tr(At]Az. A31) # 0, then [A3. AI] # 0 and [A3, A4 # 0, so as we are working in 
Gl(2, C), 

Bt - B3 = aAl + a’A3. B2 - B3 = bA2 + b’A3. (6) 

Now since Al + A2 -t A3 + A4 = 0, we must have 

AI + A2 + A3 + A4 = [AI. BII + ]A29 B21f [A3. &I+ [A4? B41= 0 

and hence substituting from (6), 

[AI + A2 + A3. B31 +&AI. A31 + b’[A2, A31 - [AI + A2 + A3, B41 = 0. 

Multiplying by AI + A2 + A3 and taking the trace, 

a’tr(Az[Al, A31) + b’tr(At [AZ, A31) = 0, 

andsincetr(At[A2,A3]) #O,wehaveu’= b’.Thusfrom(6),[At, Bt] = [A,, B3+a’A3] 

and [A2. &I = [A2, 83 + b’A31 = [A2, B3 + u’A3]. Since clearly [A3, B3] = [A3. B3 + 

u’A3], we see that the tangent vector is tangential to the orbit of the overall SL(2, C) action, 
and so zero on the quotient. It follows that dx and dy are independent and hence provide 
local coordinates. 0 

Let us consider the projection onto M of the Schlesinger equations. From (5). we have 
the differential equation for x and y: 

dx dtr(AtA3) 
dr= dt 

= tr(At [AZ, A311 
t-l ’ 

d?,_ d tr(A2A3) tr(A21A 1, &I) 
dt - dt = t . 

(7) 

We set .f(x, y) = tr(At[A2, A3]). This is easily seen to be expressible as a function of x 
and y. In fact, in al(2, C) 

(tr([At , A2]A3))2 = -2det 

tr AT trAtA2 trA3At 

trAtA2 tr Ai tr A2A3 

trA3AI tr A2A3 
2 

trA3 
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and as the Ak lie on fixed orbits, we have tr(Ai) = (ilk, a constant. Together with 

~4 = tr(Af) = tr(At + A2 + A3)2 

=(YI +a2+a3+2tr(AlA~+A2A3+A3A1) 

this gives the explicit formula 

i 

ai B-x-p x 
f(x,y)2=-2det B-x-v a2 .v 

x Y w 

with 2g = (~4 - CY~ - ~2 - cy3. 
Differentiating (7) again we obtain 

“=y(~)2+$(~)($), 
dt2 

Jf!&y($)2+$(~)(p). 
Since x, y are local coordinates we see that these are equations for the geodesics of an affine 
connection, and so we conclude: 

Proposition 1. Schlesinger’s equation dejnes a projective structure on M. 

We can easily put the projective structure in the form of a second-order ordinary differ- 
ential equation (ODE). From (7) 

2-l-t _- 
dx t 

and differentiating gives 

(8) 

d2?,_ 
dx’ 

ldt 
t2 dx’ 

so from (7) again we obtain the equation 

4. Poisson structure 

(9) 

Solving Eq. (9) explicitly is not an option: it is well known that this first case of 
Schlesinger’s equation is equivalent to Painleve’s sixth equation, which can in general 
only be solved with new transcendental functions. Instead, we shall try to gain information 
about the equation by studying the space of solutions from the above point of view: the 
structure of U* as a complex surface containing projective lines. 
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Consider first the tangent space to U* at a solution v(x) of (9). This consists of the vector 
space of solutions U(X) of the linearized equation: 

Now any homogeneous second-order linear differential equation can be written in self- 
adjoint form 

the consequence of which is that for any two solutions u 1, ~12 the skew-symmetric Wronskian 
expression 

is constant. This defines a 2-form w on U*, which may, however, be singular. 
In fact the form must be singular at some points, as the geometry of the complex surface 

lJ* shows. Recall that each projective line in U* has self-intersection number 1. In other 
words, the first Chem class of the normal bundle N is 1. If K denotes the canonical bundle 
of the surface U*, then restricted to each line C, we have 

cl(K) = ci(Kc) -cl(N) = -2 - 1 = -3 

since the Euler characteristic of the projective line is 2. Thus any 2-form on U* must have 
a pole on C of order 3. Let us consider what happens for Schlesinger’s equation. 

Here, from the linearization equation, we need the function F(x) such that 

-=_ 

But using the ODE (9), we find the solution 

and thus F, and hence w, has singularities where dv1d.r = 0 and - 1. Each projective line 
in U* is the projectivized tangent space of a point in U. and so this provides two points 
where the form has a pole. The third one can be seen by passing to the equivalent ODE with 
x expressed as a function of v, it is where dx/dv = 0. 

The 2-form w has poles in CT* on those solutions of (9) for which dv/dx = 0. - 1 or 00. 
By inspection these are the three sets of straight lines 

\’ = Cl, ?‘=-xfb. x = c. 

As a. h, (’ vary they form a divisor D c U* with three components. 
In two dimensions, a 2-form is a section of a line bundle-the canonical bundle K - and its 

inverse is a section of the anticanonical bundle K -‘. Thus in our case w-’ is a holomorphic 
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section of K-’ whose zero-set is the divisor D. Outside D, w is non-vanishing and defines 
a symplectic form, which we shall call the Wronskian form. 

A manifold with a section of A2T whose Schouten bracket vanishes is a Poisson manifold. 
For the dual of a symplectic form the condition is automatically satisfied, so we can say: 

Proposition 2. The space ofgeodesics on a convex open set in A4 is a holomorphic Poisson 
sur$ace. 

5. Isomonodromic deformations 

In order to focus better on the space U”, it is necessary now to consider the geometric 
origins of the Schlesinger equation. 

Consider, then, the Riemann surface S consisting of P’ with n + 1 disjoint discs D; 
removed, one of them a neighbourhood of co. The fundamental group of S is a free group 
on n generators ~1 . . . , p,, , each one given by a choice of simple loop around the discs in 
the finite part. If we let pLn+i denote the loop around infinity, the group is generated by n + 1 
elements with one relation. 

The holonomy of a flat connection on S will then be defined by matrices Mi E GL(m, C) 
such that 

MIA42...Mn+l = 1. (10) 

If we fix the conjugacy classes Ci of each Mi, the space of matrices satisfying (lo), and with 
no common invariant subspace, modulo conjugation by GL(m, C) is a smooth manifold 
M. If 12 = 3 and we consider connections with holonomy in SL(2, C), the dimension of 
this manifold is 4 x 2 - 2 x 3 = 2. 

Now suppose in each disc Di, we choose a point xi. There is a straightforward way of 
writing down flat connections on S: consider the meromorphic l-form 

with Ak E gZ(m, C). This defines a connection on S = P’\Dl U . . U Dn+l, which is 
flat since A is holomorphic. If the eigenvalues of the residue Ak do not differ by a pos- 
itive integer, a classical result says that the holonomy around the point Xk is conjugate 
to exp(-2ri&). Thus if & lies in a fixed adjoint orbit ok, the holonomy Mk lies in a 
corresponding conjugacy class Ck. In this case the residues form a point 

AI,Az...., A,,+] E 01 x 02 x ... x O,,+l. 

The sum of the residues of a meromorphic differential on a Riemann surface is always zero, 
so 
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n+ I 

c Ak = 0. 
k=l 

We form the quotient (of suitably stable points) by GL(m. C). Our space M is just such a 
quotient, with n = 3 and Ak E s/(2. C), and again it is two-dimensional. 

There is a relation between the two manifolds M and M. For each (XI. , x,,), the 
holonomy of the flat connection A defines a point in M. In classical terminology. an 
isomonodromic deformation Ak (XI, . . . , x,) is a family whose holonomy is fixed: it defines 
a single point in M. Schlesinger’s equation is the differential equation satisfied by the 
matrices AL in an isomonodromic deformation. 

Let us concentrate now on our basic example M with n = 3. In this case, for each 
t # 0. I. 00, and point x E M we have a connection form 

A(~)=A,~+A__ 
dz dz 

; 
q]+Ai- 

4. - z - t’ 

We saw that a geodesic in A4 is an integral curve of the Schlesinger equation. which 
therefore corresponds to an isomonodromic deformation: it is determined by a fixed point 
m E M. Thus M parametrizes geodesics in M. Fix a point x E M. then as t varies. we ob- 
tain a curve in M, the holonomy of the connection A(t). Each isomonodromic deformation 
of connections whose holonomy lies on the curve, passes through X: this is essentially a de- 
scription of the duality discussed in Section 2, where now the isomonodromic deformations 
are geodesics of a projective structure. 

It seems, then, that the representation space M is the complex surface U* we are seeking. 
This is almost true, but there are two complications. 

The first is that M is an affine variety, and can contain no compact projective lines. In 
some sense we see that already, each distinguished curve in M has parameter t restricted 
to lie in P’\(O, 1, 00). Moreover, M is symplectic whereas U* is Poisson. A more likely 
result is then that M = U*\D. 

It is the second complication which changes our point of view slightly: there is in fact 
no map from $‘\(O. 1. 00) to M, only from the universal covering. which is the upper 
half-plane. The reason is that M was defined by using a particular set of generators of the 
fundamental group, giving holonomy matrices Ml. Mz, M3, M4. As t moves arounds 0.1 or 
00. the generators are changed by an element of the mapping class group - in this case the 
pure braid group H(3). This is evident in a more abstract setting in Malgrange’s derivation 
of the equations for isomonodromic deformations [7]. 

We obtain this way an injective map from U*\D to M/H(3). The action on &I is not 
everywhere proper and discontinuous, but then the restriction to an open set has already 
been made: we needed a geodesically convex open set U c M to get a well-defined space 
of geodesics U*. The result we obtain then is: 

Proposition 3. Let U c M be a geodesically convex open set for the projective structure. 

Then there is an open set in the representation space M on which the braid group H(3) 
acts,freel_v crnd discontinuously and whose quotient is U*\ D. 
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6. Symplectic aspects 

The relationship between M and U*\U has another facet. Both are in a natural way 
symplectic manifolds, M because it is a moduli space of flat connections on a surface, and 
for that reason acquires a natural symplectic structure U,Q [3]. Also, the space U*, as we 
have seen, has a Poisson structure coming from the Wronskian on the space of solutions to 
the linearized ODE. We shall prove here the following. 

Proposition 4. Under the isomorphism above, the natural symplectic structure u,u on the 
mod&i space M ofjat connections coincides with the Wronskian on U*\ D. 

Pro@ This is a local question, and so the braid group complications do not appear. First 
consider the symplectic structure on M. This is defined in the general case of a surface S 
with boundary by means of a moment map for a central extension of the group of gauge 
transformations acting on the affine space of connections A on S [ 1 ] 

where F(A) is the curvature of the connection A. The boundary as consists of a disjoint 
union of circles and a connection on a circle is determined up to gauge equivalence by its 
holonomy. It follows that if c3 denotes the space of connections on the boundary with fixed 
holonomy, then the moduli space M = I-(~’ ((0) x 0 x (11)/G. The space 0 is a coadjoint 
orbit. and for this reason. we have a symplectic quotient and M inherits a symplectic form 

(JJ,M. 
In the general situation of a symplectic manifold W with H-action, the symplectic struc- 

ture on p -’ (0)/H can be viewed as an ordinary symplectic quotient of the group H acting 
diagonally on W x 0 with moment map J. The symplectic form on the symplectic quotient 
is then induced from the restricted 2-form on the submanifold 

P(O) = ((x, 11) E w x 0: k(X) = r]). 0 

In this gauge-theoretic case, the symplectic form is given as follows. If (Y, B E Q’ (a~?, 61) 
are two tangent vectors at a connection A, we take the symplectic form on 0 

WI((Y, B) = & 
s 

tr(4BL 

i) s 

where dA@ = cy. On the space of connections A (which is the symplectic manifold W in 
our calculation) we have the symplectic form 

w2(a. m = 
s 

tr(a A B) 

for CY, b E R’(S. !I). The symplectic form on J-‘(O) is then 
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w = (WI. 04). 

In our case, S has four discs removed. We take the orbit c3 to be the gauge orbit for which 
the holonomy is exp (-2rriAk) around the kth boundary component, and consider 

V=d+A,d-+A2 
d: 

; 
s++ 

I -t’ 

For fixed t define a map (p to J-‘(O) by 

@(AI, AZ. A3) = (V. Vlas. 1). 

The map (71 descends to a map cp : A4 + M. We shall consider the pull-back of the canonical 
symplectic form on M to M. 

Now M itself is a symplectic manifold, for the condition A 1 + AZ + A3 + AJ = 0 is the 
vanishing of the moment map on the product of orbits 01 x 01 x 03 x 0~. Quotienting 
by the action SL(2. C) produces a symplectic manifold. We shall show in fact that the 
canonical symplectic form w,,~ on M pulls back to the canonical form WM on M. This is a 
useful intermediate step in identifying it with the Wronskian. The proof consists of showing 
that @*(WI, to?) is the canonical form on c3t x 02 x 03 x 04. 

Let B be a tangent vector at (A 1. A_. 7 A3) to this product of orbits. Then 

for some Bk. For two such tangent vectors B, C with b = dp( B) and y = dp(C) we have 

cp*w( B, C) = 
.I 

tr(B A v) + 
.I 

tr(dv). 

s i1.S 

Now the first term vanishes, since B and y are (1, O)-forms. As to the second term, on each 
disc we can find a holomorplzic C$ (z) satisfying 

dz 
~+,A,.dldZ+LA2&+ 

dz 

. z ;- 
, + [A3. $1~ = @. 

;- 

This is easily seen by expanding in power series around each singularity. Thus by Cauchy’s 
residue theorem, the second term is 

tr(-Bk[&, Ckl) 

and this is the canonical symplectic form on a product of orbits. 
We have seen that, for each t, the function cp is a local symplectic diffeomorphism. We 

shall use this next to calculate the symplectic form on A4 in terms of the coordinates X. J. 
Denote the dependence of cp on t by qt. A solution curve of the Schlesinger equation is now 
given by 

(x(t) E M:cp,(x(t)) = c, 
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for a fixed 6 E M; for, this is simply the definition of an isomonodromic deformation. 
Since pt is symplectic, differentiating with respect to t, we obtain a Hamiltonian vector 
field, and we deduce that the Schlesinger flow is Hamiltonian with respect to the canonical 
symplectic structure. From (5), the equations are: 

dAl [A33 AI] dA2 [A33 A21 - = -=- 
dt t ’ dt t-l ’ 

dA3 [Al, A31 + [A29 A31 -=--- 
dt t t-l’ 

Using the canonical symplectic form, the Hamiltonian is easily seen to be 

H  =  MAdI) + tr(&Ad =- ;+-‘- (11) t t-l t-l 

in the coordinates x, y on M. The Schlesinger equations in these coordinates are 

dx f f dv= 
dt=t-1’ dt t 

and these are obtained by integrating the time-dependent vector field 

x= .f a .fa 
t-lax t ay’ 

If the Hamiltonian is (1 l), the symplectic form must therefore be 

1 
W,&, = -dx A dy, 

f 

since 

(12) 

I(X)WM = 2 + $ = dH. 

Finally we relate this to the Wronskian symplectic form on M. We again use r++ for fixed 
t. For a solution of the Schlesinger equations 

dy l-t 
_- 

TX- t 1 

so fixing t is equivalent to fixing dy/dx = (1 - t)/t = c. Now let <I, & be local coordinates 
on M and y(x. 61, &) the corresponding solution to (9). The equation 

defines x as a function of <I, (2, and so the local inverse $ of qr is 

Ilr(61, c-2) = (x(61, C2), Y(X(61, <2). <I> (2)). 

(13) 

Since we now know that ti*WM = WM, we can relate this to the Wronskian. Differentiating 
_v with respect to 6) and 42, we get solutions 
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of the linearized ODE, and differentiating the constraint ( 13) we have 

Thus 

----- dtl A G 

=-(f~)-‘(~,,,-~~,)d5,Ad52 

=(~(~+1))-‘(~~2-~U,)d~,Adt2 

from the ODE (9). This however is precisely the Wronskian form. 

7. Conclusions 

Schlesinger’s equation has geometrical origins, in the problem of describing the holon- 
omy of a flat connection. Formulated in the language of projective structures, its space of 
solutions can be extended, and in doing so we have seen how to extend the moduli space 
of flat connections, with its natural symplectic structure, to a Poisson manifold containing 
compact rational curves, at least after we have made the identification by using the mapping 
class group. The local differential geometry of the projective structure, and the fundamental 
fact that a geodesic emanates from each point in every direction, has given us this extension, 
but it must surely have a description in terms of flat connections too. 

One possible scenario is that the extra points are equivalence classes of connections with 
only three simple poles. Note that as t -+ 1, the poles of the connection 

withresidues A2andAgapproacheachother.Since dy/dx = (I-t)/t,ast -+ 1, dyjdx + 
0 and the limiting geodesics are of the form y = tr(AzA3) = (Y, a constant. We may think 
therefore of replacing A2 and A3 in the limit by a common value AZ, and adding to M/H (3) 
the holonomy of a connection 

_ 
A,5 +&-- 

dz 

Z Z-l 
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with three singularities (including the point at infinity), with 

tr(Af) = LYI, &(A;) = a, tlg, = cY4, 

where A3 = -A I - Ax. It would be interesting to know if this holds in any natural way. 
We should finally point out that in [5] Hurtubise and Kamran approached the problem 

of studying solutions to the Painleve equations by using the same twistor approach. They 
consider the second-order equation to be the Painleve equation itself, however, and not the 
ODE (9) which is geometrically equivalent to it. 
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